Monitoring the Evolution of Software Systems Maintanability
P. Antonelli$D. Antoniod'Y. Kanellopoulo$’C. MakrisE. TheodoridisC. Tjortjis’N. Tsirakis
1. University Of Patras, Department of Computer iBegring and Informatics, Greece

2. The University Of Manchester, School Of Comp8teence, U.K.
{adonel, antonid, makri, theodori, tsirakis}@ceidatras.gr, Yiannis.Kanellopoulos@postgrad.manchestek,
christos.tjortjis@manchester.ac.uk

Abstract decomposition into subsystems. Besides association

This paper presents ongoing work on using data rUleS, the Clustering data mlnlng teChnique hasnbee
mining clustering to support the evaluation of aite ~ used to support software maintenance and software
systems’ maintainability. As input for our analysis ~ Systems knowledge discovery [13], [10]. The work in

employ software measurement data extracted from[10] proposes a methodology for grouping Java code
Java source code. elements together, according to their similarityd an

focuses on achieving a high level system
1. Introduction understanding.
) Understanding low/medium level concepts and

The scope of this work is to facilitate maintenance elationships among components at the function
engineers to comprehend a s_oftw_a_re system ano{)aragraph or even line of code level by mining @ an
evaluate its evolution and maintainability. We e C

to address questions such as which classes are faut
prone and more difficult to understand and maintain
how a system evolves from version to version and
finally what are the dynamics of a system’s classes
through time.

OBOL legacy systems source code was addressed in
9]. For C programs, functions were used as estitie
and attributes were defined according to the usk an
types of parameters and variables, and the types of
returned values. Then clustering was applied to
. ., identify sub-sets of source code that were grouped
For this reason we present a methgdology which together according to custom-made similarity metric
employs the clustering mining technique for the [8]. An approach for the evaluation of clusterimg i
analysis of so_ftware mea;urement data. The k'dynamic dependencies is presented in [14]. Theescop
Attractors algorithm which is tailored for software of this solution is to evaluate the usefulness of

measuredment r?actlal[4] was u_sed f?r this purposAe. -Lheproviding dynamic dependencies as input to software
proposed methodology consists of two steps. At t eclustering algorithms. Additionally, Clustering ove

first step, each version of a software system &@yaed Module Dependency Graph (MDG) [6] uses a
separately in order to evaluate its maintainabifitize . collection of algorithms which facilitate the autatic

second step comprises a macro-clustering analys'srecovery of the modular structure of a softwareesys
which investigates the derived clusters from ak th ffom its source code. This method creates a.

verglons ofaso,ftwarel systerl?. T?Je aim of rt]h's Eﬂlep hierarchical view of system architecture into
Study a system's evolution by observing how clister subsystems, based on the components and the

from e_ach VErsion grow up or shrink gnd how t_helr relationships between components that can be éeltect
centroids are moving in space from version to wersi ool Lo
Moreover, in [5] an approach that examines the

2. Related work evolution of code stored in source control repost

Data mining [4], is the process which extracts js presented. This technique identifie€hange
implicit, previously unknown, and potentially usefu Clusters which can help managers to classify different
information from data, by searching large volumés 0 code change activities as either maintenance or new
them for patterns and by employing techniques sisch development. On the other hand, [12] analyzes veeth
CIaSSiﬁcation, association rules mining, and @Uﬂg some Change Coup”ng between source code entties i
More specifically, data mining has been previously sjgnificant or only minor textual adjustments héeen
used for identification of subsystems based on checked in; in order to reflect the changes tostherce
associations (ISA methodology) [2]. Sartipi etwed code entities. An approach for analyzing and
it for architectural design recovery [11]. Theyposed classifying change types based on code revisioss ha
a model for the evaluation of the architecturaiglesf been developed.
a system based on associations among system |n addition, Beyer and Noack in [3] presented a
components and used system modularity measuremenfnethod based on clustering software artifacts rieo
as an indication of design quality and its to organize software systems into subsystems and by

this way make changes less expensive and less error

prone. Towards the same goal of comprehending large cluster; WV — M€
software systems by creating abstractions of thewhere:

software system’s structure, Mitchell and Mancaridi

in [8] presented the Bunch clustering system. lis th e U units in the system

work, clustering is implemented by search techrsque e M: measurements performed on units

and is performed on graphs that represent theraiste e G groups of units

structure. The subsystems are generated by paitigo Thus, a matrix of measurement values is partitioned

a graph of entities and relations. Another apprdach jnto a list of such matrices. Each matrix represent

the context of software clustering is the Limbo cjyster of items that are similar in terms of their
algorithm, introduced by Tzerpos and Andritsos [1]. measurement values.

This scalable hierarchical algorithm focuses on |n order to extract useful information for the

minimizing the information loss when clustering a maintenance engineers through the clustering asalys
system, by applying weighting schemes that refleet jt js very interesting to observe the form of eatister

importance of each component. _ . over time. How each cluster grows up or shrinks and
Cluste_rlng algorithms are also used by Mancoridis how its median is moving in space. In order to aghi
et al. [7] in order to support the automatic reew& that, a first task to be performed is the idenditien of

the modular structure of a software system from itS ggch cluster in each version. An approach is to

source code. The algorithms selected in this case a combpine all the data sets (the data points correfipg
traditional hill-climbing and genetic algorithms. {5 classes) into a large data set. Each point ikeda
Towards program comprehension, a crucial step isyith a different color in order to disentangle thater
_detectlng important classe_s of the system, sineg th on. If we apply a clustering algorithm in this datt
implement the most basic and high level actions. (k-Attractors in our case) we can make the assumpti
Zaidman et al [15] introduced four static web-m@in that a cluster will encompass data items of theesam
and coupling metrics in order to identify such sls cjyster through the versions. In each of theseteilsis
and generally analyze a software system. will exist the same data items with different cotord
The work presented in this paper differs from the {hys from different version. We can verify this by
Iiteratu_re discussed above in means of perf_orminginventing an inner metric: the percentage of daiatp
clustering on the software measurement data, ai@ing that exist in the cluster with all the possibleazsl(or a
comprehending a software system and assessing ityercentage respectively of them, for example 3066t
maintainability. More specifically, instead of apiplg of the versions). There are several ways to expihst
clustering algorithms on graphs or directly on the cjystering by automated methods: we can tracedte d
source code, we employ the k-Attractors clustering jtems that have escaped the cluster and examtheyif
algorithm on metrics that reflect the most impottan pgye gone to a better or a worse cluster, by examin
design aspects of a software system concerning itSn each cluster the sub-clusters, each one with a
quality and maintainability. We employ a two-steps jferent color, and how their centroid is movingda
clustering analysis in order to provide a quicl§ ar!d the portion of their spatial overlap. By these pantc
rough grasp of a software system and depict its gpservations, the sequence of centroids and pioport

evolution by from version to version. of the overlap, we can see if the data items of the
corresponding cluster evolve to better or a wotates

3. Clustering Analysis In order to quantify the cluster changes we define
metric m(i) of each clustei which expresses how

3.1. Objectives many variations, data items (from version to versio

The primary objective of the proposed clustering exist in the same cluster at the same time, ansl ithu
methodology is to provide a general but illumingtin the same quality space. This metric is expressetidy
view of a software system that may lead enginesrs t following formula:
useful conclusions concerning its maintainabiliEpis
data mining technique is useful for m(i) = 5
Similarity/Dissimilarity analysis; in other wordg i
analyzes what data points are close to each athar i
given dataset.

In the domain of software measurement data Y/heren is the number of the formed clusters,
analysis for maintenance purposes, clustering @n b occ(x) is the number of occurrences of each data item

formalized by the following function signature: x in clusteri, andpi is the cardinality (population) of
clusteri.

)

3.2. k-Attractors Algorithm CdrInputStream. These classes are used for
streaming objects in Corba Common Data
In the case of software maintainability evaluation, Representation format. These classes are useg fairl
clustering produces overviews of systems by crgatin widely within the application server, for, amonges,
mutually exclusive groups of classes, member data o serializing non-primitive data structures, hence th
methods, according to their similarities in termis o high complexity values. They should be of interest
technical (source code) measurements [16]. Thigshel the maintenance engineers, since they are at
reducing the time required to understand and etalua Geronimo’s core and widely used, so for
the overall system. Another contribution of clustgr ~ maintainability and runtime performance they wid b
is that it helps discovering programming patternd a important classes. Classes
“unusual” or outlier cases which may require aftent KernelManagementHelper and MockGBean can
For this purpose the k-Attractors algorithm was also be interesting from a maintenance engineer’s
employed which is tailored for numerical data sash perspective.
measurements from source code [4]. The main In the second step, the macro-clustering analysis,

characteristics of k- Attractors are: we traced classes that their quality was eitheratb
o It defines the desired number of clusters (i.e. th or upgraded. Such classes arefContext and
number of k), without user intervention. AbstractwebModuleBuilder
o It locates the initial attractors of cluster ceste
with great precision. 5. Future Work

0 It measures similarity based on a composite Our findings indicate that the proposed
metric that combines the Hamming distance and methodology has considerable merit in facilitating
the inner product of transactions and clusters’ maintenance engineers to monitor how a system’s
attractors. maintainability evolves. On the other hand thouigh,
The k-Attractors algorithm employs the maximal lacks the ability to predict the maintainability ah

frequent itemset discovery and partitioning in orte upcoming version of a system. Another data mining

define the number of desired clusters and theainiti technique with prediction capabilities (such as

attractors of the centers of these clusters. Thation classification) could be additionally employed imer
is that a frequent itemset in the case of softwareto enhance our methodology.
metrics is a set of measurements that occur togathe Moreover and apart from this, we consider the

a minimum part of a software system’s classes.98ls following various alternatives in order to further
with similar measurements are expected to be on thedevelop the proposed methodologySystems’
same cluster. The term attractor is used instead ofcomponents clustering based on their dynamic
centroid, as it is not determined randomly, butitsy =~ dependenciedt would be of great interest to attempt
frequency in the whole population of a software to evaluate the usefulness of analysing the dynamic

system’s classes. dependencies of a software system’s artef&atgploy
an alternative approach for monitoring cluster
4. Evaluation —Case Study changes from version to versiodnother approach for

monitoring cluster changes is to perform the cluste
The evaluation of the proposed methodology procedure for each one of the versions. We use all
involved the study of Apache Geronimo Application these clusters (each one with a different color
Server. It is a fully certified J2EE 1.4 platforrorf according to the version that belongs) in a second
developing and deploying Enterprise Java applioatio ~ clustering phase, using the corresponding centraids
Web applications and portals. Three publicly avd@a order to produce clusters of clusters in a hieiaeth
versions of Apache Geronimo were evaluated way. We can assume that each one of the level two
employing a set of software evaluation metrics and clusters consists of the same cluster of data item
their analysis using the k-Attractors clustering through versions.

algorithm.
In the first step of the analysis we created . Conclusions
overviews for each version of Apache in order teeha In this research work, the development of a

an inqlication for their maintainability status. 'h_hby methodology based on the clustering data mining
studying the formed clusters for each version, we tachnique was presented. It consists of two steps:
discovered classes which were fault prone. Those i. a separate clustering step for every version of

classes were members of the outlier clusters and a system to assist software system'’s
examples are CdroutputStream and evaluation in means of maintainability.

ii. a macro-clustering analysis in order to study Maintenance of Software System Structur&Qc. Int'l
the system’s dynamics from version to Conf. Software Maintenance (ICSM 99099, pp.50-
version. [7] 5I\Q/I);emcoridis S., Mitchell, B. S., Rorres, C. “Using

The scope of the proposed methodology is to Al P i
fac_ilitate maintenance engineers_ to identify classe g‘ﬂ;‘;ﬂiﬁ‘;oﬁ's”ﬂi?”gsa rséoduccoed;:gh-(lig\gzl)lzsé/étem
which are fgult prone and more difficult to U“O_'ﬂm‘ Proceedings of the 1998 Int. Workshop on Program
and maintain as well as to study the evolution of a Understanding (IWPC'98)L998
system from version to version, and its classes’
dynamics. We chose to employ the Kk-Attractors [g]
clustering algorithm as it is tailored for the arsid
software measurement data.

Our work is different than [7], which employs
clustering in order to produce a high-level orgatian

of the source c_ode. A(_jdltlonally, instead of applyi Techniques”,Proc. Intl Conf. Software Maintenance
clustering algorithms d|rectly. on the source codg [(ICSM 98) IEEE Comp. Soc. Press, (1998) 16-23.

we clustered software metrics that reflect the mostj10] Rousidis, D. and Tjortjis, C. “Clustering Data
important aspects of a system concerning its qualit Retrieved from Java Source Code to Support Software
and maintainability. Moreover the study of the sks Maintenance: A Case StudyProc IEEE 9th European
evolution through versions differentiates this work Conf. Software Maintenance and Reengineering (CSMR
from [15] which only detects the most important 05), IEEE Comp. Soc. Press, (2005) 276-279.

Mitchell, B. S. and Mancoridis, S. "On the Automgat
Modularization of Software Systems Using the Bunch
Tool". IEEE Trans. Software Engvol. 32(3), 2006, pp.
193-208

[9] Oca, C. M. de and Carver, D. L. “ldentification of
Data Cohesive Subsystems Using Data Mining

classes on a single version of the system. [11] Sartipi, K. Kontogiannis, K. and Mavaddat, F.
“Architectural Design Recovery Using Data Mining
Techniques”, Proc. 2nd European Working Conf.
Software Maintenance Reengineering (CSMR 2000,
Acknowledgements pp. 129-140.

This research work has been partially supportethby

Greek General

Secretariat for

Technology (GSRT) and Dynacomp S.A. within the
program “P.E.P. of Western Greece Act 3.4".

Research and

Tjortjis C., Sinos, L. and Layzell, P. J. “Fadiling
Program Comprehension by Mining Association Rules
from Source Code”Proc. IEEE 11th Int'l Workshop
Program Comprehension (IWPC 03)003, pp. 125-

132.

[13] Tzerpos, V. and Holt, R. “Software Botryology:
Automatic Clustering of Software System&toc. 9th
Int'l Workshop Database Expert Systems Applications
(DEXA 98) 1998, pp. 811-818.

[14] Xiao, C. and Tzerpos, V. “Software Clustering on
Dynamic DependenciesProc. IEEE 9th European
Conf. Software Maintenance and Reengineering
(CSMR 05)2005, pp. 124-133.

[15] Zaidman, A., Du Bois, B. and Demeyer, S. “How

References

[1] Andritsos, P. and Tzerpos, V. “Information-Theareti
Software Clustering”. EEE Trans. Software Engol.
31(2), 2005, pp. 150-165

[2] Bandi, R. K., Vaishnavi, V. K. and Turk, D. E.
“Predicting Maintenance Performance Using Object
Oriented Design Complexity = Metrics”, IEEE
Transactions on Software Engineeringol. 29(1),
January 2003, pp. 77-87.

(3]

[4]

[4]

[5]

(6]

Beyer, D. and Noack, A. “Clustering software atis
based on frequent common changés”Proc. IWPG
IEEE, 2005, pp. 259-268.

Kanellopoulos Y., Antonellis P. Tjortjis C., MakriC.,
“k-Attractors, A Clustering Algorithm for Software
Measurement Data Analysis”, In Proceedings of IEEE
19th International Conference on Tools for Artiici
Intelligence (ICTAI 2007), IEEE Computer Society
Press 2007

Kunz, T. and Black, J. P. “Using Automatic Praces
Clustering for Design Recovery and Distributed
Debugging”, IEEE Transactions on Software
Engineering vol. 21(6), 1995, pp. 515-527,

Lawrie, D. J., Feild, H. and Binkley, D. "Leverage
Quality Assessment using Information Retrieval
Techniques,"14th IEEE International Conference on
Program Comprehension (ICPC'Q&006, pp. 149-158.
Mancoridis, S., Mitchell, B.S., Chen, Y. and Gasrsn
E.R. “Bunch: A Clustering Tool for the Recovery and

Webmining and Coupling Metrics Improve Early
Program ComprehensiorilCPC, 2006, pp. 74-78

S. Zhong, T.M. Khoshgoftaar, and N. Seliya,
“Analyzing Software Measurement Data with
Clustering Techniques”, IEEE Intelligent Systems].V
19, No. 2, 2004, pp. 20-27.

