
Monitoring the Evolution of Software Systems Maintainability
P. Antonellis1D. Antoniou1Y. Kanellopoulos1,2C. Makris1E. Theodoridis1C. Tjortjis2N.Tsirakis1

1. University Of Patras, Department of Computer Engineering and Informatics, Greece
2. The University Of Manchester, School Of Computer Science, U.K.

{adonel, antonid, makri, theodori, tsirakis}@ceid.upatras.gr, Yiannis.Kanellopoulos@postgrad.manchester.ac.uk,
christos.tjortjis@manchester.ac.uk

Abstract
This paper presents ongoing work on using data

mining clustering to support the evaluation of software
systems’ maintainability. As input for our analysis we
employ software measurement data extracted from
Java source code.

1. Introduction

The scope of this work is to facilitate maintenance
engineers to comprehend a software system and
evaluate its evolution and maintainability. We attempt
to address questions such as which classes are fault
prone and more difficult to understand and maintain;
how a system evolves from version to version and
finally what are the dynamics of a system’s classes
through time.

For this reason we present a methodology which
employs the clustering mining technique for the
analysis of software measurement data. The k-
Attractors algorithm which is tailored for software
measurement data [4] was used for this purpose. The
proposed methodology consists of two steps. At the
first step, each version of a software system is analyzed
separately in order to evaluate its maintainability. The
second step comprises a macro-clustering analysis
which investigates the derived clusters from all the
versions of a software system. The aim of this step is to
study a system’s evolution by observing how clusters
from each version grow up or shrink and how their
centroids are moving in space from version to version.

2. Related work

Data mining [4], is the process which extracts
implicit, previously unknown, and potentially useful
information from data, by searching large volumes of
them for patterns and by employing techniques such as
classification, association rules mining, and clustering.
More specifically, data mining has been previously
used for identification of subsystems based on
associations (ISA methodology) [2]. Sartipi et al. used
it for architectural design recovery [11]. They proposed
a model for the evaluation of the architectural design of
a system based on associations among system
components and used system modularity measurement
as an indication of design quality and its

decomposition into subsystems. Besides association
rules, the clustering data mining technique has been
used to support software maintenance and software
systems knowledge discovery [13], [10]. The work in
[10] proposes a methodology for grouping Java code
elements together, according to their similarity and
focuses on achieving a high level system
understanding.

Understanding low/medium level concepts and
relationships among components at the function,
paragraph or even line of code level by mining C and
COBOL legacy systems source code was addressed in
[9]. For C programs, functions were used as entities,
and attributes were defined according to the use and
types of parameters and variables, and the types of
returned values. Then clustering was applied to
identify sub-sets of source code that were grouped
together according to custom-made similarity metrics
[8]. An approach for the evaluation of clustering in
dynamic dependencies is presented in [14]. The scope
of this solution is to evaluate the usefulness of
providing dynamic dependencies as input to software
clustering algorithms. Additionally, Clustering over a
Module Dependency Graph (MDG) [6] uses a
collection of algorithms which facilitate the automatic
recovery of the modular structure of a software system
from its source code. This method creates a
hierarchical view of system architecture into
subsystems, based on the components and the
relationships between components that can be detected
in source code.

Moreover, in [5] an approach that examines the
evolution of code stored in source control repositories
is presented. This technique identifies Change
Clusters, which can help managers to classify different
code change activities as either maintenance or new
development. On the other hand, [12] analyzes whether
some change coupling between source code entities is
significant or only minor textual adjustments have been
checked in; in order to reflect the changes to the source
code entities. An approach for analyzing and
classifying change types based on code revisions has
been developed.

In addition, Beyer and Noack in [3] presented a
method based on clustering software artifacts, in order
to organize software systems into subsystems and by

this way make changes less expensive and less error
prone. Towards the same goal of comprehending large
software systems by creating abstractions of the
software system’s structure, Mitchell and Mancoridis
in [8] presented the Bunch clustering system. In this
work, clustering is implemented by search techniques
and is performed on graphs that represent the system’s
structure. The subsystems are generated by partitioning
a graph of entities and relations. Another approach in
the context of software clustering is the Limbo
algorithm, introduced by Tzerpos and Andritsos [1].
This scalable hierarchical algorithm focuses on
minimizing the information loss when clustering a
system, by applying weighting schemes that reflect the
importance of each component.

Clustering algorithms are also used by Mancoridis
et al. [7] in order to support the automatic recovery of
the modular structure of a software system from its
source code. The algorithms selected in this case are
traditional hill-climbing and genetic algorithms.
Towards program comprehension, a crucial step is
detecting important classes of the system, since they
implement the most basic and high level actions.
Zaidman et al [15] introduced four static web-mining
and coupling metrics in order to identify such classes
and generally analyze a software system.

The work presented in this paper differs from the
literature discussed above in means of performing
clustering on the software measurement data, aiming at
comprehending a software system and assessing its
maintainability. More specifically, instead of applying
clustering algorithms on graphs or directly on the
source code, we employ the k-Attractors clustering
algorithm on metrics that reflect the most important
design aspects of a software system concerning its
quality and maintainability. We employ a two-steps
clustering analysis in order to provide a quick and
rough grasp of a software system and depict its
evolution by from version to version.

3. Clustering Analysis

3.1. Objectives

The primary objective of the proposed clustering
methodology is to provide a general but illuminating
view of a software system that may lead engineers to
useful conclusions concerning its maintainability. This
data mining technique is useful for
Similarity/Dissimilarity analysis; in other words it
analyzes what data points are close to each other in a
given dataset.

In the domain of software measurement data
analysis for maintenance purposes, clustering can be
formalized by the following function signature:

cluster : vM×U → vM×U×G

where:

• U: units in the system
• M: measurements performed on units
• G: groups of units

Thus, a matrix of measurement values is partitioned
into a list of such matrices. Each matrix represents a
cluster of items that are similar in terms of their
measurement values.

In order to extract useful information for the
maintenance engineers through the clustering analysis,
it is very interesting to observe the form of each cluster
over time. How each cluster grows up or shrinks and
how its median is moving in space. In order to achieve
that, a first task to be performed is the identification of
each cluster in each version. An approach is to
combine all the data sets (the data points corresponding
to classes) into a large data set. Each point is marked
with a different color in order to disentangle them later
on. If we apply a clustering algorithm in this data set
(k-Attractors in our case) we can make the assumption
that a cluster will encompass data items of the same
cluster through the versions. In each of these clusters
will exist the same data items with different color and
thus from different version. We can verify this by
inventing an inner metric: the percentage of data points
that exist in the cluster with all the possible colors (or a
percentage respectively of them, for example 3 out of 5
of the versions). There are several ways to exploit this
clustering by automated methods: we can trace the data
items that have escaped the cluster and examine if they
have gone to a better or a worse cluster, by examining
in each cluster the sub-clusters, each one with a
different color, and how their centroid is moving and
the portion of their spatial overlap. By these panoramic
observations, the sequence of centroids and proportion
of the overlap, we can see if the data items of the
corresponding cluster evolve to better or a worse state.

In order to quantify the cluster changes we define a
metric m(i) of each cluster i which expresses how
many variations, data items (from version to version)
exist in the same cluster at the same time, and thus in
the same quality space. This metric is expressed by the
following formula:

m(i) =

∑

∑∑

=

=∈∀
j

j

n

jcix

pj

xocj

1

1

)((1)

Where n is the number of the formed clusters,
occ(xi) is the number of occurrences of each data item
x in cluster i, and pi is the cardinality (population) of
cluster i.

3.2. k-Attractors Algorithm

In the case of software maintainability evaluation,
clustering produces overviews of systems by creating
mutually exclusive groups of classes, member data or
methods, according to their similarities in terms of
technical (source code) measurements [16]. This helps
reducing the time required to understand and evaluate
the overall system. Another contribution of clustering
is that it helps discovering programming patterns and
“unusual” or outlier cases which may require attention.
For this purpose the k-Attractors algorithm was
employed which is tailored for numerical data such as
measurements from source code [4]. The main
characteristics of k- Attractors are:
o It defines the desired number of clusters (i.e. the

number of k), without user intervention.
o It locates the initial attractors of cluster centers

with great precision.
o It measures similarity based on a composite

metric that combines the Hamming distance and
the inner product of transactions and clusters’
attractors.

The k-Attractors algorithm employs the maximal
frequent itemset discovery and partitioning in order to
define the number of desired clusters and the initial
attractors of the centers of these clusters. The intuition
is that a frequent itemset in the case of software
metrics is a set of measurements that occur together in
a minimum part of a software system’s classes. Classes
with similar measurements are expected to be on the
same cluster. The term attractor is used instead of
centroid, as it is not determined randomly, but by its
frequency in the whole population of a software
system’s classes.

4. Evaluation –Case Study

The evaluation of the proposed methodology
involved the study of Apache Geronimo Application
Server. It is a fully certified J2EE 1.4 platform for
developing and deploying Enterprise Java applications,
Web applications and portals. Three publicly available
versions of Apache Geronimo were evaluated
employing a set of software evaluation metrics and
their analysis using the k-Attractors clustering
algorithm.

In the first step of the analysis we created
overviews for each version of Apache in order to have
an indication for their maintainability status. Then by
studying the formed clusters for each version, we
discovered classes which were fault prone. Those
classes were members of the outlier clusters and
examples are CdrOutputStream and

CdrInputStream. These classes are used for
streaming objects in Corba Common Data
Representation format. These classes are used fairly
widely within the application server, for, among others,
serializing non-primitive data structures, hence the
high complexity values. They should be of interest to
the maintenance engineers, since they are at
Geronimo’s core and widely used, so for
maintainability and runtime performance they will be
important classes. Classes
KernelManagementHelper and MockGBean can
also be interesting from a maintenance engineer’s
perspective.

In the second step, the macro-clustering analysis,
we traced classes that their quality was either degraded
or upgraded. Such classes are RefContext and
AbstractWebModuleBuilder

5. Future Work

Our findings indicate that the proposed
methodology has considerable merit in facilitating
maintenance engineers to monitor how a system’s
maintainability evolves. On the other hand though, it
lacks the ability to predict the maintainability of an
upcoming version of a system. Another data mining
technique with prediction capabilities (such as
classification) could be additionally employed in order
to enhance our methodology.

Moreover and apart from this, we consider the
following various alternatives in order to further
develop the proposed methodology: Systems’
components clustering based on their dynamic
dependencies. It would be of great interest to attempt
to evaluate the usefulness of analysing the dynamic
dependencies of a software system’s artefacts. Employ
an alternative approach for monitoring cluster
changes from version to version. Another approach for
monitoring cluster changes is to perform the clustering
procedure for each one of the versions. We use all
these clusters (each one with a different color
according to the version that belongs) in a second
clustering phase, using the corresponding centroids, in
order to produce clusters of clusters in a hierarchical
way. We can assume that each one of the level two
clusters consists of the same cluster of data item
through versions.

6. Conclusions

In this research work, the development of a
methodology based on the clustering data mining
technique was presented. It consists of two steps:

i. a separate clustering step for every version of
a system to assist software system’s
evaluation in means of maintainability.

ii. a macro-clustering analysis in order to study
the system’s dynamics from version to
version.

The scope of the proposed methodology is to
facilitate maintenance engineers to identify classes
which are fault prone and more difficult to understand
and maintain as well as to study the evolution of a
system from version to version, and its classes’
dynamics. We chose to employ the k-Attractors
clustering algorithm as it is tailored for the analysis
software measurement data.

Our work is different than [7], which employs
clustering in order to produce a high-level organization
of the source code. Additionally, instead of applying
clustering algorithms directly on the source code [7],
we clustered software metrics that reflect the most
important aspects of a system concerning its quality
and maintainability. Moreover the study of the classes’
evolution through versions differentiates this work
from [15] which only detects the most important
classes on a single version of the system.

Acknowledgements
This research work has been partially supported by the
Greek General Secretariat for Research and
Technology (GSRT) and Dynacomp S.A. within the
program “P.E.P. of Western Greece Act 3.4”.

References
[1] Andritsos, P. and Tzerpos, V. “Information-Theoretic

Software Clustering”. IEEE Trans. Software Eng. vol.
31(2), 2005, pp. 150-165

[2] Bandi, R. K., Vaishnavi, V. K. and Turk, D. E.
“Predicting Maintenance Performance Using Object
Oriented Design Complexity Metrics”, IEEE
Transactions on Software Engineering, vol. 29(1),
January 2003, pp. 77-87.

[3] Beyer, D. and Noack, A. “Clustering software artifacts
based on frequent common changes”. In Proc. IWPC,
IEEE, 2005, pp. 259–268.

[4] Kanellopoulos Y., Antonellis P. Tjortjis C., Makris C.,
“k-Attractors, A Clustering Algorithm for Software
Measurement Data Analysis”, In Proceedings of IEEE
19th International Conference on Tools for Artificial
Intelligence (ICTAI 2007), IEEE Computer Society
Press 2007

[4] Kunz, T. and Black, J. P. “Using Automatic Process
Clustering for Design Recovery and Distributed
Debugging”, IEEE Transactions on Software
Engineering, vol. 21(6), 1995, pp. 515-527,

[5] Lawrie, D. J., Feild, H. and Binkley, D. "Leveraged
Quality Assessment using Information Retrieval
Techniques," 14th IEEE International Conference on
Program Comprehension (ICPC'06), 2006, pp. 149-158.

[6] Mancoridis, S., Mitchell, B.S., Chen, Y. and Gansner,
E.R. “Bunch: A Clustering Tool for the Recovery and

Maintenance of Software System Structures”, Proc. Int'l
Conf. Software Maintenance (ICSM 99), 1999, pp.50-
59.

[7] Mancoridis, S., Mitchell, B. S., Rorres, C. “Using
Automatic Clustering to Produce High-Level System
Organizations of Source Code”, (1998) IEEE
Proceedings of the 1998 Int. Workshop on Program
Understanding (IWPC'98), 1998

[8] Mitchell, B. S. and Mancoridis, S. ”On the Automatic
Modularization of Software Systems Using the Bunch
Tool”. IEEE Trans. Software Eng., vol. 32(3), 2006, pp.
193-208

[9] Oca, C. M. de and Carver, D. L. “Identification of
Data Cohesive Subsystems Using Data Mining
Techniques”, Proc. Int'l Conf. Software Maintenance
(ICSM 98), IEEE Comp. Soc. Press, (1998) 16-23.

[10] Rousidis, D. and Tjortjis, C. “Clustering Data
Retrieved from Java Source Code to Support Software
Maintenance: A Case Study”, Proc IEEE 9th European
Conf. Software Maintenance and Reengineering (CSMR
05), IEEE Comp. Soc. Press, (2005) 276-279.

[11] Sartipi, K., Kontogiannis, K. and Mavaddat, F.
“Architectural Design Recovery Using Data Mining
Techniques”, Proc. 2nd European Working Conf.
Software Maintenance Reengineering (CSMR 00), 2000,
pp. 129-140.

[12] Tjortjis C., Sinos, L. and Layzell, P. J. “Facilitating
Program Comprehension by Mining Association Rules
from Source Code”, Proc. IEEE 11th Int’l Workshop
Program Comprehension (IWPC 03), 2003, pp. 125-
132.

[13] Tzerpos, V. and Holt, R. “Software Botryology:
Automatic Clustering of Software Systems”, Proc. 9th
Int'l Workshop Database Expert Systems Applications
(DEXA 98), 1998, pp. 811-818.

[14] Xiao, C. and Tzerpos, V. “Software Clustering on
Dynamic Dependencies”, Proc. IEEE 9th European
Conf. Software Maintenance and Reengineering
(CSMR 05), 2005, pp. 124-133.

[15] Zaidman, A., Du Bois, B. and Demeyer, S. “How
Webmining and Coupling Metrics Improve Early
Program Comprehension.” ICPC, 2006, pp. 74-78

[16] S. Zhong, T.M. Khoshgoftaar, and N. Seliya,
“Analyzing Software Measurement Data with
Clustering Techniques”, IEEE Intelligent Systems, Vol.
19, No. 2, 2004, pp. 20-27.

